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Figure 1: NFL-BA enhances tracking and mapping in neural rendering-based SLAM (e.g., MonoGS
[23]) by explicitly modeling dynamic near-field lighting, with applications in endoscopy.

Abstract
Simultaneous Localization and Mapping (SLAM) systems typically assume static,
distant illumination; however, many real-world scenarios, such as endoscopy, sub-
terranean robotics, and search & rescue in collapsed environments, require agents
to operate with a co-located light and camera in the absence of external lighting. In
such cases, dynamic near-field lighting introduces strong, view-dependent shading
that significantly degrades SLAM performance. We introduce Near-Field Lighting
Bundle Adjustment Loss (NFL-BA) which explicitly models near-field lighting as a
part of Bundle Adjustment loss and enables better performance for scenes captured
with dynamic lighting. NFL-BA can be integrated into neural rendering-based
SLAM systems with implicit or explicit scene representations. Our evaluations
mainly focus on endoscopy procedure where SLAM can enable autonomous navi-
gation, guidance to unsurveyed regions, blindspot detections, and 3D visualizations,
which can significantly improve patient outcomes and endoscopy experience for
both physicians and patients. Replacing Photometric Bundle Adjustment loss of
SLAM systems with NFL-BA leads to significant improvement in camera track-
ing, 37% for MonoGS and 14% for EndoGS, and leads to state-of-the-art camera
tracking and mapping performance on the C3VD colonoscopy dataset. Further
evaluation on indoor scenes captured with phone camera with flashlight turned on,
also demonstrate significant improvement in SLAM performance due to NFL-BA.

1 Introduction
Simultaneous Localization and Mapping (SLAM) enables autonomous agents to build a spatial map of
an unknown environment while estimating their own poses within it, with wide-ranging applications
in robotics, computer vision, autonomous vehicles, and scientific imaging. Most SLAM systems
[37, 33, 6, 59, 62, 57, 48, 19, 27, 15] assume an autonomous agent navigating an environment with
distant, static illumination, e.g., a self-driving car in the streets, and they optimize a Photometric
Bundle Adjustment loss where they minimize an error between the captured image and the re-rendered
image using estimated 3D scene and camera poses.
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Figure 2: We compare MonoGS performance under (1) distant static lighting and (2) dynamic
near-field lighting from a co-located flashlight. Standard photometric BA performs well under static
lighting but fails under dynamic lighting, degrading both trajectory and map quality. NFL-BA restores
performance under dynamic lighting, matching the quality of the static-light setup.
However, many scientific and safety-critical applications demand that autonomous agents operate
in environments devoid of external illumination, relying instead on self-mounted light sources. For
example, in endoscopy procedures, a slender flexible tube with a co-located light and camera is used
to inspect internal organs such as the airway and the colon [8, 45, 32, 22, 50, 16]. Accurate trajectory
estimation is crucial for reliably guiding instruments to areas of interest, mapping anomalies, and
avoiding tissue damage during navigation. In subterranean search-and-rescue or collapsed-building
inspection, robots rely on onboard lamps to explore unstable voids; slight errors in pose estimation
can accumulate into large drift, leading to misaligned maps, missed victims, or costly back-tracking.

Despite the prevalence of these use cases, current SLAM systems perform poorly under such
conditions (see Fig. 2). This performance drop is primarily due to the effects of dynamic near-field
lighting, where the only illumination is co-located with the camera and moves with it. Dynamic
near-field lighting causes different points of the surface to receive different intensities of light at each
time step, depending on the distance and orientation of the point to the camera, introducing strong,
view-dependent shading. These lighting artifacts significantly impair both feature-based and direct
(photometric) tracking, resulting in substantial failures in mapping accuracy and pose estimation.

To alleviate these issues, we propose a new Bundle Adjustment loss that accounts for dynamic
near-field lighting. Our key intuition is that the shading effect of the captured image can provide
valuable information about the relative distance and orientation between the surface and the camera.
With this, we formulate a Near-Field Lighting Bundle Adjustment loss, NFL-BA, where we optimize
the surface geometry and the camera parameters such that the rendered image has shading variations
that match the relative distance and orientation between the surface and the camera. Our NFL-BA
loss can be applied to any neural rendering-based SLAM algorithm, i.e., with neural implicit and
explicit 3D Gaussian scene representation.

In this paper, we specifically focus on demonstrating how NFL-BA can improve the performance of
existing SLAM systems for 3D reconstruction and localization from endoscopy videos. SLAM can
enable autonomous navigation through internal organs and guide physicians to unsurveyed regions
to improve physicians’ situational awareness by providing 3D visualizations, and can help measure
organ shapes, e.g. the cross-sectional area of the upper airway to diagnose airway abnormalities
[53]. We evaluated NFL-BA with two state-of-the-art 3DGS-based SLAM systems, general-purpose
MonoGS [23] and endoscopy-specific EndoGSLAM [45], and one neural implicit SLAM, NICE-
SLAM [59], by replacing their Photometric Bundle Adjustment loss with NFL-BA loss. We observe
that the NFL-BA loss improves the performance of all SLAM algorithms on average when using
ground-truth or estimated depth maps on the C3VD colonoscopy dataset. For example, NFL-BA
significantly improves over MonoGS by reducing camera tracking error by 37% (3.48mm to 2.18mm)
and camera mapping error by 38% (1.59mm to 0.99mm) when initialized by PPSNet depth[34].

Additionally, we also demonstrate the effectiveness of NFL-BA on indoor rooms captured with a
moving co-located light and camera without any external light source, mimicking agent navigation
during search & rescue and covert military operations. By replacing incorporating our NFL-BA loss,
we see an average improvement of ∼35% in pose estimation across all scenes.

2 Related Works
Dense SLAM and Bundle Adjustment. Early SLAM pipelines focused on sparse feature matching
for pose estimation and mapping [30, 5, 42, 10]. With advancements in neural scene representations
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several proposed SLAM frameworks [59, 61] generate dense, pixel-level that yield more detailed and
robust reconstructions. More recently, 3D Gaussian surface methods have demonstrated real-time
rendering with high-fidelity mapping[19, 27, 48, 15, 9, 52].

These dense SLAM approaches all rely on a core Bundle Adjustment step. Bundle Adjustment
(BA) alternatively optimizes camera parameters and surface geometry by minimizing errors across
multiple frames. Traditional geometric BA aligns detected 2D feature points to their 3D counterparts
by minimizing reprojection error, assuming static lighting and Lambertian surfaces [13]. Although
effective in controlled environments, it struggles in complex or low-texture scenes. Photometric BA
(Photo-BA) [1] incorporates pixel intensities into the optimization process, minimizing photometric
re-projection errors and proving advantageous in environments where feature matching fails [10].
However, Photo-BA does not exploit the correspondence cues provided by dynamic or near-field
lighting where image intensities vary across frames.

Near-field Lighting models. Near-field lighting has been leveraged for 3D reconstruction tasks like
monocular depth and surface normal estimation [34, 58] and Photometric Stereo [21]. Some of these
approaches [34, 20] use a near-field lighting representation as input to a CNN along with captured
images for predicting surface normal and geometry. In the context of Endoscopy, LightDepth [36]
and PPSNet [34] demonstrated the effectiveness of near-field lighting to enhance depth estimation.
LightNeus [2] exploited the inverse-square law for light decay to improve endoscopic surface
reconstruction, however with known camera parameters and pre-operative 3D CT scan.

It has never, however, been used for Simultaneous Localization & Mapping (SLAM) problems, let
alone in combination with neural rendering methods. To this end, we propose a Bundle Adjustment
Loss with Near-Field Lighting (NFL-BA), considering the most commonly available single co-located
camera & light in the endoscope or other autonomous agents.

Dynamic Lighting in SLAM. Visual SLAM performance often degrades under illumination changes
such as exposure shifts, specularities, and varying color temperature. Early photometric calibration
methods jointly optimize camera intrinsics, exposure, and scene depths to normalize brightness
variations in real time [10] while probabilistic SLAMs with unscented filtering further stabilizes
pose estimates under uncertain lighting conditions [26]. More recently, learning-based matchers
[41, 55] adapt descriptors to cope with complex lighting variations. None of these methods, however,
explicitly model near-field lighting geometry to handle this co-located light setting.

SLAM in endoscopy. Early works [39, 11] demonstrated the feasibility of applying SLAM in
such environments by addressing dynamic lighting and tissue deformation. Researchers have often
used a mixture of supervised learning on synthetic and self-supervised learning on real endoscopy
datasets for tailoring SLAM frameworks to endoscopy with complex camera motion [25, 56, 46] and
developed novel endoscopy SLAM frameworks [35, 29, 17]. However these techniques often struggle
with challenging sequences from both synthetic and clinical data. Recently, neural rendering-based
methods [38, 22, 45, 50, 12, 14] have proved especially effective in generating high-quality details
and modeling textureless regions with a large number of Gaussians. In this work, we adopt neural
rendering approaches and explicitly model the near-field lighting effects, alleviating dynamic lighting
challenges and improving performance.

3 Background
In this section, we review the general framework of neural rendering-based SLAM. We represent
the camera at time t by its extrinsics Pt = [Rt, Tt] ∈ SE(3) and known intrinsics K, yielding the
projection πt = KPt. We assume the camera intrinsic K to be the same for all frames and known or
calibrated ahead of time. Pixels are denoted p and 3D camera-space points by x.

In neural rendering, scene parameters Θ, whether in the form of neural networks or primitives, encode
visual and geometric information, such as colors ci and occupancy αi. Given Θ and Pt, we can get
the color Ĉ(·) and the depth D̂(·) of a pixel p from a frame at time t as follows [28, 19]:

Ĉ(p) =
∑
i∈N

ciαiΠ
i−1
j=1(1− αj) , D̂(p) =

∑
i∈N

ziαiΠ
i−1
j=1(1− αj) (1)

where N denotes the group of samples for a pixel p, with αi representing the occupancy of the i-th
sample, and zi denotes its distance from the camera center.

To optimize Pt and Θ, dense SLAM methods typically use rendering loss Lren , reducing the
rendering errors between the rendered and captured images [59, 23, 48] and, if estimated or ground
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truth depth maps are available, an additional depth loss Lgeo can be added [43]. Typically, these
losses take the form of Lp norm as follows with variations with Mt as a pixel-wise mask:

Lren = ∥Mt ⊙ (Ĉ − C)∥p, Lgeo = ∥Mt ⊙ (D̂ −D)∥p (2)

Bundle adjustment optimizes both Pt and Θ using the following combined loss:

Photo-BA: min
∑
t∈W

λrenLren(Ĉ, C;Mt) + λgeoLgeo(D̂,D;Mt) (3)

where W denotes the set of frames used for the bundle adjustment and the hyperparameters λren and
λgeo are the loss weights. Additionally, the objective function can include any other regularization
terms, such as artifact suppressing [27] or opacity regularization [60].

During the Mapping stage, both Θ and Pt are optimized over a set of keyframes. The exact algorithm
for keyframe selection, keyframe update and optimization strategies for tracking and mapping phase
vary between different SLAM approaches and their specific objectives.

Implicit Neural Representations. Neural field-based SLAM methods [40, 59, 44, 62, 37] uses a set
of neural networks F (x, d; Θ) → (ci, σi), optimized to estimate the color ci and the volume density
σi for an input 3D coordinate x and the view direction d. The the occupancy can be calculated from
the volume density σi and the distance between adjacent samples δi as αi = 1− exp(−σiδi).

3D Gaussian Splatting. For 3D Gaussian Splatting [19] SLAM methods, the scene is represented by
a set of Gaussians with mean µi, covariance Σi in world space, color ci, and opacity αi. The shape
parameters and occupancy αi of the splatted 2D Gaussians are computed as follows:

µ̄i
t = πtµ

i, Σ̄i
t = JtRtΣ

iRT
t J

T
t , αi = αi exp(−1

2
(p− µ̄i

t)
⊤(Σ̄i

t

)−1
(p− µ̄i

t)) (4)

where Jt is the Jacobian of the projection πt, p denotes a pixel coordinate, and µ̄i
t, Σ̄

i
t are the splatted

mean and covariance of Gaussian Gi in pixel space.

4 Near-Field Light Bundle Adjustment

Co-located light 
and camera Incoming Radiance


Surface Normals

Figure 3: Illustration of our key idea. As the co-
located light and camera, moves through the scene,
different 3D Gaussians on the surface receive dif-
ferent intensities of light (red arrow), dependent on
the relative distance and orientation between the
3D Gaussian and the camera.

We introduce a novel Near-Field Lighting based
Bundle Adjustment loss, NFL-BA, that inte-
grates near-field lighting with neural-rendering
3D scene representations to improve perfor-
mance of existing SLAM systems on images
captured with dynamic lighting co-located with
the camera. Our proposed NFL-BA can replace
commonly used Photometric Bundle adjustment
loss, defined in Eq. 3, within neural-rendering
based SLAM framework. Photo-BA typically
optimizes scene appearance parameter as RGB
color, which is suffient when the illumination on
each scene point remains the constant throughout the capture. However, for scenes with a dynamic
light co-located with a moving camera, the illumination received at each point varies per frame as the
camera and the light moves through the scene. In this setting, the illumination received at each point
depends on the relative distance and orientation between the point and the camera, as conceptualized
in Fig. 3. Thus continuing to model scene appearance as simple RGB color is inaccurate for dynamic
near-field lighting as it doesn’t separate effects of illumination due to camera movement from the
intrinsic view-independent color of the scene, i.e. albedo.

Our goal is to explicitly model surface appearance as albedo and separate near-field lighting effects
from it. To accurately model dynamic lighting we then represent near-field illumination effects with
camera pose and scene geometry. In sec. 4.1 we describe our image formation model using neural
rendering framework that will decompose the surface appearance into albedo and incoming lighting,
which will be further represented as a function of scene geometry and camera pose. Then in sec. 4.2,
we will use this image formation to create the Near-Field Bundle Adjustment loss and show how it
can be easily integrated into neural rendering based SLAM framework.
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Figure 4: We show that C3VD images captured with a real endoscope conform to our co-located light-camera
and zero attenuation β image formation model, as indicated by very low per-pixel scale-invariant MSE (col 3)
between the original image (col 1) and the reconstructed image with masked-out specular regions (col 2).
4.1 Image Formation with Near-Field Lighting
We consider an image-formation model under near-field lighting for a single image following previous
works [18, 34]. Each pixel p and the corresponding three-dimensional point xp in the camera space
receives different light intensities and directions, characterized by the light source to surface direction
Ld(·) and attenuation term La(·), as follows:

Ld(xp) =
xp − xL

∥xp − xL∥
, La(xp) =

(Ld(xp)
⊤f)β

∥xp − xL∥2
, (5)

where xL is the location of the light source, f is the forward (optical axis) vector. β is an angular
attenuation coefficient, and will be discussed in sec. 4.2.

Assuming a diffuse reflectance model, which has proven effective for depth estimation in endoscopic
scenes [34], we can approximate the rendered image at each pixel Ĉ(·) as:

PPS(xp) = La(xp) · (Ld(xp)
⊤n(xp)), Ĉ(p) = ρ(xp)PPS(xp) , (6)

where ρ(·) and n(·) are albedo and normal at position xp of pixel p respectively. PPS(·) is a
per-pixel shading term. Note that existing approaches that uses this near-field light image formation
model [18, 34] uses pixel-based representation to predict depth map or surface geometry from images
captured from a single viewpoint only. In this paper, we extend the Near-Field Image Formation
model beyond single-view pixel-based representation to multi-view 3D representation.

Our key insight is that the standard volumetric rendering equation can be modified to incorporate
the near-field lighting model described in eq. 6, while keeping the overall SLAM pipeline intact. In
our framework, we reinterpret the direct color (ci in eq. 3) as the product of the albedo ρ(·) and the
shading term PPS(·), which models dynamic near-field lighting. Note that both albedo and shading
is defined directly on the 3D neural representations, i.e. neural radiance field or 3D gaussians, and
not in pixel-space. This leads to the modified rendering equation under near-field lighting:

Ĉpps(p) =
∑
i∈N

ρ(xi)PPS(xi)αiΠ
i−1
j=1(1− αj) (7)

Note that eq. 6 represents a special case of eq. 7 where a single sample is considered and the
occupancy αi equals one. Our image formation model assumes diffuse reflectance and no angular
attenutation, to reduce the complexity of the modeling. While it is easy to extend the image formation
model to handle specular reflectance and angular attenutation of lighting, this leads to additional
parameters that needs to be optimized during the Bundle Adjustment.

Angular attenuation. Following previous works [21, 34], we simplify the near-field light image
formation model by setting the attenuation coefficient β in eq. 5 to zero. This effectively ignores the
directional fall-off component, reducing the light attenuation term to a simple inverse-square fall-off
La(xp) = 1/∥xp − xL∥2. This simplification is justified because the angular attenuation in settings
like endoscopy is often negligible compared to the inverse square law attenuation, and estimating
β accurately can be challenging due to variations in endoscope designs. In future work, we plan
determine the optimal value of β for different systems and incorporate the light direction vector ret
for more accurate modeling which can further improve camera rotation during Bundle Adjustment.

Empirical validation of our image-formation model on colonoscopy image. Fig. 4 provides an
example colonoscopy image from the C3VD dataset [3], showing the accuracy of the near-light field
model (Eq. 6) with β of 0. Albedo was estimated by converting each RGB image to HSV color
space, setting the value channel to 1 across all pixels, then converting the modified image back to
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RGB space. This standardizes pixel intensity variations, approximating a reflectance map where
illumination effects are minimized, but does not strictly represent ground truth albedo. As shown, the
image formulation model is sufficient to represent endoscopic scenes with low reconstruction errors.

4.2 Near-Field Light Bundle Adjustment Loss
Next, we will re-define the Photometric Bundle Adjustment loss of eq. 3 using the near-field lighting
based image formation model defined in eq . 7 expressed as follows:

NFL-BA: min
∑
t∈W

λrenLren(Ĉpps, C;Mt) + λgeoLgeo(D̂,D;Mt) (8)

where Ĉpps denotes the rendered image with near-field lighting-incorporated volumetric rendering
equation (Eq. 7). This reformulation seamlessly integrates near-field lighting cues into the neural
rendering framework without altering the rest of the SLAM framework. Since our formulation
is confined solely to the rendering process, and thus to the bundle adjustment, we do not modify
or replace any other SLAM components for fair comparison. This design choice enables easier
integration with existing neural rendering-based SLAM methods.

Choice of image space in optimization. Note that many settings, and especially endoscopy, frames
are stored in standard sRGB color space, whereas our near-field shading term PPS(·) is computed in
a linear space. To ensure consistency, we apply an inverse gamma correction of γ = 2.2 to the sRGB
images before computing PPS, or equivalently, gamma-correct the linear PPS output by γ = 1/2.2
when rendering back to sRGB. This step aligns the lighting model with the true photometric intensities
and prevents bias from the nonlinear sRGB transfer function.

Normal calculation during Bundle Adjustment. To calculate the normals n(·) from neural fields,
we utilize the direction of the gradient of the occupancy with respect to the spatial coordinates as
follows [4]: n(xi) = −∇σ(xi)/∥∇σ(xi)∥. For Gaussian Splatting, we use the shortest axis of each
Gaussian as its normal, following [51, 7, 47]. In both cases, we ensure the computed normal is
oriented towards the camera by enforcing n(x)⊤Ld(x) to be positive. Otherwise, we flip the normals
by multiplying them by -1 for stability.

5 Evaluation
Table 1: Quantitative Evaluation on the C3VD [3]
dataset with oracle depth map. Replacing
Photometric BA with NFL-BA significantly im-

proves tracking quality of two state-of-the-art 3D
Gaussian SLAMs, MonoGS [23] and EndoGS [60],
and one neural implicit SLAM, NICE-SLAM [59].

Tracking Mapping

Method BA ATEt (mm)↓ ATEr (◦)↓ Chamfer (mm)↓
NICE-SLAM,
CVPR’22

Photo 4.16 2.68 1.95
NFL 2.88 2.81 1.70

EndoGSLAM,
MICCAI’24

Photo 1.93 1.81 0.85
NFL 2.04 1.13 0.97

MonoGS,
CVPR’24

Photo 2.90 1.11 1.16
NFL 1.60 1.49 0.79

Our proposed method is a plug-in approach
that can be applied to any existing neural-
rendering-based SLAM framework. We first
test our method on endoscopy videos using
one neural implicit SLAM, NICE-SLAM [59],
as well as two existing 3DGS-SLAM frame-
works: the general-purpose MonoGS [27] and
the endoscopy-specific EndoGSLAM [45]. In
each case, we replace the standard Photometric
Bundle Adjustment loss (3) with our proposed
equation NFL-BA loss (8). Additionally, we
also test MonoGS [27] on self-captured indoor
scenes with a co-located light and camera.

5.1 Evaluation Setting
Datasets. We evaluate our method on three datasets that reflect different challenges in handling
near-field dynamic lighting: (1) a phantom endoscopy dataset, (2) a clinical endoscopy dataset, and
(3) a dataset of indoor scenes captured with phone camera with flashlight turned on.

C3VD. The C3VD dataset [3] (CC BY-NC-SA 4.0) was created using a phantom colon with synthetic
materials to simulate realistic tissue geometry. The endoscopy video was captured by a surgeon who
performs different endoscopy procedures on the phantom colon with a real endoscope capturing RGB
images coupled with corresponding depth maps. We focus on 8 sequences ranging from 70 to 800
frames from different regions of the colon, for more details, please see supplementary. We evalute
using both ground truth and predicted depths.

Colon10K. To test generalization in real-world clinical endoscopy settings, we evaluate on Colon10K
[24], a large-scale video dataset without depth or pose supervision. Videos are sampled from actual
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Table 2: Quantitative Evaluation on the C3VD [3] dataset with depth maps estimated by SOTA
techniques, PPSNet [34] and DA-Hybrid. Replacing Photometric BA with NFL-BA significantly
improves tracking for both MonoGS [23] and EndoGS [60], and mapping and rendering quality for
MonoGS [23]. Note that SOTA performance for each of the tracking, mapping, and rendering
metrics is observed when NFL-BA is used.

ATEt (mm)↓ ATEr (◦)↓ Chamfer (mm)↓ LPIPS↓
Method BA PPS-Net DaHybrid PPS-Net DaHybrid PPS-Net DaHybrid PPS-Net DaHybrid

EndoGSLAM,
MICCAI’24

Photo 3.03 6.67 1.73 2.26 1.23 2.12 0.39 0.43
NFL 2.62 3.91 1.24 1.58 1.25 2.39 0.39 0.42

MonoGS,
CVPR’24

Photo 3.48 4.63 1.70 1.69 1.59 1.34 0.56 0.52
NFL 2.18 2.35 1.65 1.14 0.99 1.13 0.53 0.52

Photo

O
ra
cl
e

PP
SN
et

D
A
-H
yb
rid

desc_t4_a sigmoid_t3_atrans_t2_a

Photo

Photo Photo Photo

Photo

PhotoPhotoPhoto

Figure 5: Camera tracking improvement over En-
doGSLAM [45]. Replacing the Photo-BA loss
(in blue) with NFL-BA loss (in red) significantly
improves camera tracking for different depth ini-
tialization. Average tracking error ATEt for each
sequence is reported in the inset. (zoom for details)

procedures and are typically around 300-600
frames. This setting is significantly more chal-
lenging than the phantom setting, since frames
may contain motion blur, specular highlights,
and fluid occlusions. Sequences are uniformly
sampled and fisheye corrected.

Self-Captured Indoor Scenes. To study the role
of near-field lighting in a controlled non-clinical
setting, we capture a dataset of four indoor
scenes (Guitars, Porch, Pool, and Stairs) using
an RGB-D camera. Scenes include objects with
varied geometry and reflectance (diffuse, specu-
lar), imaged under dynamic motion. Scenes are
captured using a co-located point light source
mounted to camera. Ground-truth camera tra-
jectories were recorded via motion capture, but
no reference point clouds are available; hence,
we report only trajectory error (ATEt) and per-
ceptual quality (LPIPS), omitting Chamfer dis-
tance. Details and additional visualizations are
included in the supplementary.

Metrics. For evaluation, we basically followed
other neural rendering SLAM algorithms [23, 45]. For tracking performance, we measure the root
mean square error of the Absolute Trajectory Error (ATE) for both translation and rotation across
all frames. Translation error ATEt is in millimeters (mm) for the endoscopy scenes and meters (m)
for the in-door scenes. and rotation error ATEr is in degrees. To assess the mapping quality, we
use the Chamfer distance from ground truth point clouds to the nearest points in the estimated point
clouds [46], for more details please see supplementary. In addition, we evaluate rendering quality
using the Learned Perceptual Image Patch Similarity (LPIPS) [54]. We note that for many endoscopic
SLAM applications, tracking and mapping accuracies are more important than photorealism of the
rendered images, unlike many indoor or outdoor scenes.

Computational costs We trained all models on a single NVIDIA RTX A6000 GPU. The per-scene
optimization takes ∼1 FPS. For more information on runtime speed, please see supplemental.

5.2 Evaluation on C3VD Endoscopy Data
Because NFL-BA is designed as a drop-in replacement for photometric bundle adjustment, we only
adjusted the two associated loss weights; all other hyperparameters remain identical between the
Photo-BA and NFL-BA experiments. Please see supplemental for detailed hyperparameter settings.

SLAM with oracle depth map. In Tab. 1 we replace Photometric Bundle Adjustment loss with
NFL-BA loss for depth is initialized with ground-truth or oracle. NFL-BA significantly improves
camera localization (ATEt) and mapping for NICE-SLAM and MonoGS, and only camera rotation
(ATEr) for EndoGSLAM. EndoGSLAM was specifically designed for synthetic data with an oracle
depth map, and we will show later that for estimated depth maps or real endoscopy videos, it performs
significantly worse than MonoGS Ground-truth depths are never available during endoscopy, and the
majority of endoscopes hardly have any depth sensors.
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Figure 6: (a) Camera tracking improvement over MonoGS [23]. Replacing the Photo BA loss (in blue)
with NFL-BA loss (in red) significantly improves camera tracking for different depth initialization.
Average tracking error ATEt for each sequence is reported in the inset. (b) Reconstructed point
clouds using MonoGS [23] show that NFL-BA improves coverage and density while reducing scatter
compared to Photometric BA, as measured by Chamfer distance. (zoom for details)

MonoGS Photo-BA MonoGS NFL-BA

Seq. 4

Seq. 3

EndoGSLAM

Figure 7: Results on real endoscopy from Colon10k dataset. On Sequences 3 and 4 with PPSNet
depth, NFL-BA improves MonoGS tracking and mapping, yielding more coherent, elongated colon
structures, while EndoGSLAM fails under sudden camera motion.

SLAM with predicted depth map. Under realistic conditions with estimated depths, NFL-BA’s
impact is even more pronounced. In Tab. ?? we replace Photometric BA loss with NFL-BA loss for
MonoGS [23] and EndoGSLAM [45] for depth maps we use PPSNet [34], a state-of-the-art monocular
depth estimation algorithm for endoscopy, and fine-turned general-purpose depth estimator, which
we will call it as DA-Hybrid - DepthAnything[49] with DINOv2 encoder [31]. NFL-BA significantly
improves camera localization (ATEt) and camera rotation (ATEr) for both MonoGS [23] and
EndoGSLAM [45] while producing similar rendering quality. For example, camera localization for
MonoGS is improved by 37% for PPSNet and 49% for DA-Hybrid depth initialization. Mapping
accuracy of MonoGS also improves by 37% for PPSNet and 16% for DA-Hybrid depth maps. Overall,
these results demonstrate that NFL-BA can compensate for noisy depth estimation and improves
performance. Across all four metrics, for tracking, mapping, and rendering, the SOTA performance
on the C3VD dataset is in fact achieved when NFL-BA loss is used in the SLAM framework.

5.3 Evaluation on Real Endoscopy Data

We show results on real endoscopy sequence from Colon10k sequence 3 and 4 in Fig. 7. En-
doGSLAM fails to construct any real structure, with many disconnected regions along a spiral
trajectory. EndoGSLAM assumes constant velocity and is not robust to the sudden motion common
in endoscopy procedures, which is significantly more in real data than C3VD. This results extremely
poor or failed reconstructions.
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Table 3: Quantitative results on four self-captured indoor scenes under dynamic lighting, comparing
MonoGS with standard Photo-BA versus NFL-BA. For each scene, the best of each metric is bold.

Guitars Porch Pool Stairs

BA ATEt (m)↓ LPIPS ↓ ATEt (m)↓ LPIPS ↓ ATEt (m)↓ LPIPS ↓ ATEt (m)↓ LPIPS ↓
Photo 0.30 0.39 0.50 0.49 0.41 0.46 0.36 0.40
NFL 0.18 0.37 0.35 0.50 0.30 0.44 0.20 0.31
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Photo-BA NFL-BA GT

Photo-BA NFL-BA Photo-BA NFL-BA

Photo-BA NFL-BA

Photo
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Figure 8: Results on indoor scenes captured with co-located flashlight and phone camera.
Qualitative comparison on two self-captured indoor scenes using MonoGS with standard Photo-BA
versus NFL-BA. (left) Estimated camera trajectories overlaid on ground truth. (center) Per-frame
tracking error relative to ground truth. (right) Example re-rendered views, illustrating the sharper,
more accurate reconstructions enabled by NFL-BA.
Sequence 4. This pull-back “down-the-barrel” sequence exposes a clear cylindrical lumen. With
Photo-BA, MonoGS captures the overall shape but produces a broken segment due to trajectory drift.
NFL-BA corrects this, yielding a continuous “hollow-center” reconstruction. Minor artifacts from
extreme specular highlights remain (green points), as detailed in the supplement.

Sequence 3. In the extended traversal, both Photo-BA and NFL-BA recover the colon’s general
geometry, but NFL-BA produces a longer, tighter model with less point scatter. It also better preserves
interior ridges (interactive point clouds in the supplement).

5.4 Evaluation on Indoor Scene
To validate NFL-BA in a non-medical setting, we evaluate on four indoor scenes. Table 3 shows
that replacing standard Photometric BA with NFL-BA yields substantial reductions in ATEt across
all scenes: from 0.30m to 0.18m (40%) in Guitar, 0.50m to 0.35m (30%) in Outdoor, 0.41m to
0.30m (27%) in Pool, and 0.36m to 0.20m (44%) in Stair. On average, NFL-BA reduces tracking
error by ∼35%, demonstrating that near-field shading cues greatly enhance pose estimation even in
richly textured, well-lit indoor environments. While LPIPS remains largely comparable, with slight
improvements in Guitars and Stairs and minor variations in Porch and Pool, the primary benefit of
NFL-BA is clear in trajectory accuracy (see Fig. 8).

6 Conclusions
In this paper, we presented a novel bundle adjustment loss that explicitly models dynamic near-
field lighting by incorporating light intensity fall-off based on the relative distance and orientation
between the surface and the co-located light and camera. This formulation is especially effective for
endoscopic scenes, where traditional geometric or photometric bundle adjustment losses struggle
under dynamic near-field lighting conditions on textureless surfaces. We demonstrated the general
applicability of our approach by integrating it into three different neural rendering-based SLAM
methods, improving performance on a challenging endoscopy dataset and indoor scenes captured
with a phone camera with a flashlight turned on.

Limitations. While our new formulation for SLAM effectively represents scenes with co-located and
dynamic lighting environments, it is currently limited in handling specular reflections, sub-surface
scattering, and inter-reflections. Incorporating a more complex image formulation is beyond the
scope of the current work, and addressing these remains a promising direction for future research.
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